

Dielectric Materials, Devices, and Circuits

S. Jerry Fiedziuszko, *Fellow, IEEE*, Ian C. Hunter, *Senior Member, IEEE*, Tatsuo Itoh, *Fellow, IEEE*, Yoshio Kobayashi, *Fellow, IEEE*, Toshio Nishikawa, *Fellow, IEEE*, Steven N. Stitzer, *Senior Member, IEEE*, and Kikuo Wakino, *Life Fellow, IEEE*

Invited Paper

Abstract—Dielectric materials are continuing to play a very important role in the microwave communication systems. These materials are key in realization of low-loss temperature-stable resonators and filters for satellite and broadcasting equipment, and in many other microwave devices. High dielectric-constant materials are critical to the miniaturization of wireless systems, both for the terminals and base-stations, as well as for handsets. In this paper, a sequential evolution of the dielectric materials applications in microwave devices will be reviewed. This includes dielectric waveguides, low-loss temperature-stable ceramic materials, dielectric resonators, and filters. The recent advances in the multilayer circuit modules, dielectric antennas, and ferroelectrics are also described.

Index Terms—Ceramics, dielectric antennas, dielectric materials, dielectric-resonator filters, dielectric-resonator oscillators, dielectric resonators, ferroelectrics, microwave devices, microwave filters, miniaturization, multilayer modules.

I. INTRODUCTION

FROM A historical perspective, guided electromagnetic-wave propagation in dielectric media received widespread attention in the early days of researching microwaves. Surprisingly, substantial effort in this area predates 1920 and includes such famous scientists such as Lord Rayleigh, Sommerfeld, Bose, and Debye [1]. It was discovered early that dielectric structures can guide electromagnetic waves, and that fields of these waves extended partially into surrounding space.

On August 23, 1935, Southworth received U.S. Patent 2 106,769 entitled “Transmission of Guided Waves.” In this patent disclosure, he stated that “The wave guiding structure may take a variety of forms: typical is a guide consisting of

a rod of dielectric material having high dielectric coefficient relative to unity. Another typical guide comprises a metallic pipe, containing only a dielectric medium such as air. A specific dielectric guide which may be considered is a cylinder of ceramic material having rutile (titanium dioxide) as its principal constituent” [2].

Due to radiation losses, dielectric waveguides are usually used at millimeter wavelengths, where electromagnetic field are more confined in a dielectric, and metal waveguides exhibit excessive conductive loss. The most notable use of such waveguides is at optical wavelengths-multimode or single-mode “optical fiber” is the primary light-guiding medium used in telecommunication today.

Besides electromagnetic-field guiding structures such as waveguides, high-quality resonating elements created from specially terminated waveguide structures are key to the function of most microwave circuits and systems.

The term “dielectric resonator” (DR) first appeared in 1939 when Richtmyer of Stanford University showed that unmetallized dielectric objects (toroid) can function as microwave resonators [3]. However, his theoretical work failed to generate significant interest, and practically nothing happened in this area for over 25 years. In 1953, a paper by Schlicke [4] reported on super-high dielectric-constant materials (~ 1000 or more) and their applications as capacitors at relatively low RF frequencies. In the early 1960s, researchers from Columbia University, Okaya, and Barash, rediscovered DRs while working on high dielectric materials (single-crystal TiO_2 -rutile), paramagnetic resonance, and masers. Their papers [5], [6] provided the first analysis of modes and resonator design. Nevertheless, the DR was still far from practical applications. High dielectric-constant materials such as rutile exhibited poor temperature stability, causing correspondingly large resonant frequency changes. For this reason, in spite of the high- Q factor and small size, DRs were not considered for use in microwave devices.

In the mid-1960s, Cohn and his co-workers at the Rantec Corporation performed the first extensive theoretical and experimental evaluation of the DR [7]. Rutile ceramics were used for experiments that had an isotropic dielectric constant in the order of 100. Again, poor temperature stability prevented development of practical components. A real breakthrough in ceramic technology occurred in the early 1970s when the first temperature-stable low-loss barium-tetratitanate ceramics were developed by Raytheon [8]. Temperature-stable microwave

Manuscript received June 13, 2001.

S. J. Fiedziuszko is with Space Systems/LORAL, Palo Alto, CA 94303 USA. I. C. Hunter is with the Institute of Microwave and Photonics, School of Electronic and Electrical Engineering, The University of Leeds, Leeds LS2 9JT, U.K.

T. Itoh is with the Electrical Engineering Department, University of California at Los Angeles, Los Angeles, CA 90095-1594 USA.

Y. Kobayashi is with the Department of Electrical and Electronic Systems, Saitama University, Urawa 338, Japan.

T. Nishikawa was with the Murata Manufacturing Company Ltd., Kyoto 617-8555, Japan. He is now with the Toyo Corporation, Tokyo 101-0047, Japan.

S. N. Stitzer is with the Northrop Grumman Corporation, Baltimore, MD 21203 USA.

K. Wakino is with the Department of Electrical Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.

Publisher Item Identifier S 0018-9480(02)01991-9.

DRs utilizing the composite structure of positive and negative temperature coefficients were reported by Konishi [9]. Later, a modified barium–tetratitanate with improved performance was reported by Bell Laboratories [10]. These positive results led to actual implementations of DRs as microwave components. The materials, however, were in scarce supply and, thus, were not commercially available. The next major breakthrough came from Japan when the Murata Manufacturing Company produced (Zr–Sn)TiO₄ ceramics [11], [45]. They offered adjustable compositions so that the temperature coefficient could be varied between +10 and –12 ppm/°C. These devices became commercially available at reasonable prices. Afterward, the theoretical work and use of DRs expanded rapidly.

II. DIELECTRIC-WAVEGUIDES AND COMPONENTS

Although dielectric materials are frequently used as the substrate for microstrip lines and coplanar waveguides for microwave and millimeter-wave integrated circuits, this paper will not discuss such applications since they will be treated elsewhere in this TRANSACTIONS. Rather, dielectric-waveguide families and their component applications will be described. Due to space limitation, even this subject cannot be fully described and, hence, only a limited number of examples are included. Readers with sufficient interest in this subject may consult with some of the references [12].

Obviously, dielectric waveguides have been extensively used at optical frequencies where no “good” metal conductor exists. It has been considered, therefore, that the dielectric waveguides may be useful at millimeter and submillimeter-wave frequencies where the nature of the guided wave could be closer to the one at optical frequencies. However, certain modifications are often required such as the ground plane in the image guide to provide the heat sink, and the dc-bias return of solid-state devices to be implemented in the dielectric waveguide. Fig. 1 shows cross sections of some of the dielectric-waveguide configurations.

Most dielectric waveguides are found to provide relatively low propagation loss, as there is no place where the current is crowded. On the other hand, these are difficult to use for complicated circuit configurations involving discontinuities, sharp bends, and truncations due to radiation, except for the case of the nonradiating dielectric (NRD) waveguide [13]. From the electromagnetic-field point-of-view, this radiation loss is obvious as the waveguide is theoretically made in an open space.

It turns out that only relatively simple microwave components can be fabricated such as forward directional couplers and simple phase shifters. The most successful components have been in the area of antennas, either surface-wave antennas or leaky-wave antennas. The former is typically made of a pointed rod consisting of dielectric material, while the latter is typically made of periodic perturbation along the dielectric waveguide. It should be emphasized that the periodic structure in a waveguide has been extensively studied [14] and has also been used extensively in the optical regime in such forms as the distributed feedback laser. It is interesting to note that recently there occurred a renewed interest in periodic structures often under the name of photonic bandgap (PBG) structures. Although PBG in its original form is a three-dimensional periodic structure, there are

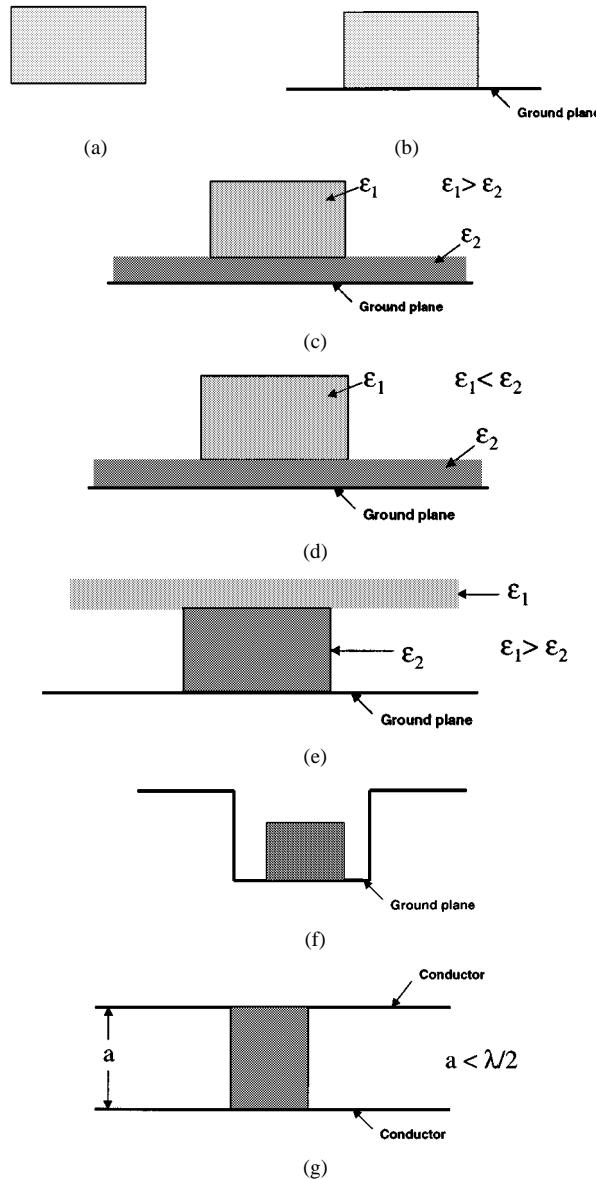


Fig. 1. Cross section of typical dielectric waveguides. (a) Dielectric rod waveguide. (b) Image guide. (c) Insulator guide. (d) Strip dielectric guide. (e) Inverted strip dielectric guide. (f) Trapped image guide. (g) NRD guide.

many two- and even one-dimensional periodic structures being studied as part of the PBG family.

One of the periodic structures in a dielectric waveguide based on the stopband (or bandgap, in PBG terminology) and on the defect mode is a Gunn diode oscillator made of a dielectric waveguide, as shown in Fig. 2 [15].

III. MICROWAVE DIELECTRIC MATERIALS

A. Microwave Properties [16]

At microwave frequencies, according to the classical dispersion theory of dielectric [17], the dielectric constant (K) is unchanged, and dielectric loss increases with frequency (f). Therefore, the product ($Q \cdot f$) describes these basic properties of each dielectric material. To advance the technology of these materials, it is extremely important to accurately measure their properties. Kobayashi *et al.* have improved the Hakki and

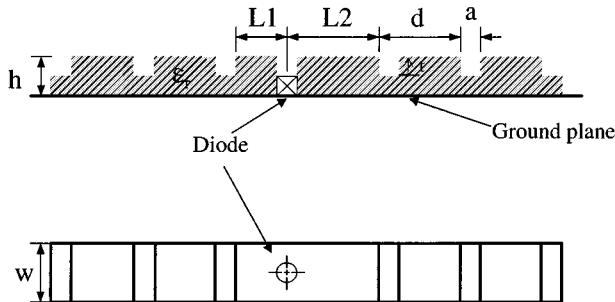


Fig. 2. Gunn diode oscillator made of dielectric waveguide with periodic perturbation (from [12]).

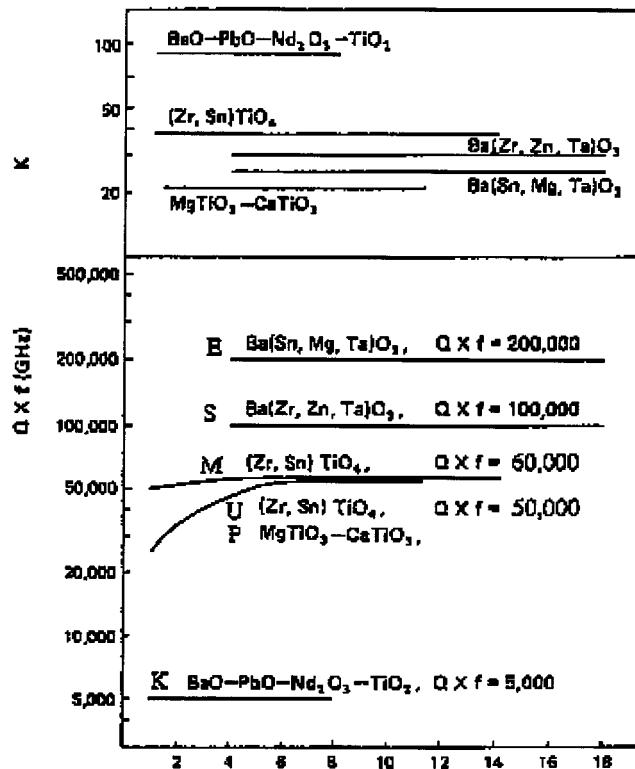


Fig. 3. Frequency dependence of K and Q values of representative dielectric materials.

Coleman method [18] to measure the loss tangent with greater accuracy [19]. This advancement accelerated the development of new materials.

Fig. 3 shows the frequency dependence of K and $(Q \cdot f)$ for representative materials and τ_f is the temperature coefficient of resonant frequency (f_0). These characteristics were obtained by measuring the microwave dielectric properties of low-loss materials using Kobayashi's method of a dielectric rod resonator short circuited at both ends by two parallel conducting plates [19].

B. Current Materials

Table I shows the characteristics of the representative dielectric materials currently available.

- 1) The MgTiO_3 – CaTiO_3 system is well known as Class I ceramic capacitor material since the 1940s, and is composed

TABLE I
REPRESENTATIVE MATERIALS FOR MICROWAVE APPLICATIONS

Materials	K	Qxf GHz	τ_f ppm/°C	Refer- - ences
MgTiO ₃ -CaTiO ₃	21	55,000	+10~- 10	[11]
Ba(Sn,Mg,Ta)O ₃	25	200,00 0	□+5~- 5	[27]
Ba(Zn,Ta)O ₃	30	168,00 0	+5~- 5	[28]
Ba(Zr,Zn,Ta)O ₃	30	100.00 0	+5~- 5	[29]
(Zr,Sn)TiO ₄	38	50,000	+5~- 5	[22]
Ba ₂ Ti ₉ O ₂₀	40	32,00 0	+10~- +2	[20]
BaO-PbO-Nd ₂ O ₃ - TiO ₂	90	5,000	+10~- 10	[22]

of a mixture of MgTiO_3 ($\tau_f = -50 \text{ ppm}^\circ\text{C}$) and CaTiO_3 ($\tau_f = +900 \text{ ppm}^\circ\text{C}$). Approximating, the K value and τ_f can be predicted as the mathematical average of each constituent's properties weighted by a volumetric fraction.

- 2) BaO–4TiO₂ is also widely used for ceramic capacitor dielectrics of $K = 36$ since the beginning of the 1950s. The BaO–TiO₂ system shows very complicated phase relations and a variety of properties with compositional changes. A slightly different Ba₂Ti₉O₂₀ ceramic was proposed in 1974 as a high- K and high- Q resonator material by O'Bryan [20]. Later, this system was modified by the addition of WO₃ to improve Q value [21].
- 3) (Zr_{0.8}Sn_{0.2})TiO₄ has a high- Q and good temperature stability [22]. Its phase relations were reported in 1981 [23]. The effects of the donor and acceptor ions on tan δ of this material were investigated. It was shown that the donor decreases the tan δ at microwave frequencies [24].
- 4) Ba(Zn_{1/3}Ta_{2/3})O₃ family represents a class of materials having extremely high- Q value. Ba(Zn,Ta)O₃–Ba(Zn,Nb)O₃ ceramics were reported in 1977 [25]. Since then, many researchers have investigated these materials, which have a complex perovskite structure. Among this family, Ba(Zn,Ta)O₃ and Ba(Mg,Ta)O₃ [26] are the most promising to obtain a Q

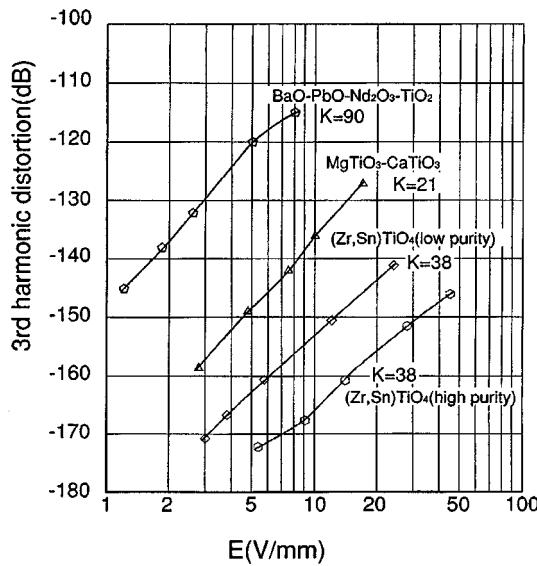


Fig. 4. IMD of several dielectric materials.

value higher than 20 000 at 10 GHz. These materials are finding applications at frequencies higher than 10 GHz.

5) The BaO–PbO–Nd₂O₃–TiO₂ material has a high dielectric constant of 90 [22]. This material is widely used at lower frequencies of around 1 GHz. Its *Q* value of 5000 is just sufficiently high enough for use at these frequencies.

Dielectric materials such as TiO₂ rich compounds of the ternary system BaO–Nd₂O₃–TiO₂ such as BaNd₂Ti₅O₁₄ and BaNd₂Ti₃O₁₁ have been investigated in [30].

Material of the BaO–Sm₂O₃–TiO₂ system has a *K* of 77 and *Q* of 10 000 at 1 GHz. This is higher than that of the BaO–PbO–Nd₂O₃–TiO₂ system [31].

C. High-Power Characteristics

Devices used for base-stations of the cellular systems and satellite communication systems are typically required to satisfy extremely low levels (of less than -170 dBc) for the intermodulation distortion (IMD) products during normal operation. The technique used to measure the extremely low distortion level was developed in [32]. To measure third-order IMD, two high power signals with frequencies of ω_1 and ω_2 are injected through the connectors on both ends of the three DR samples. The third IMD level is determined by comparing the power levels of the intermodulated signal ($2\omega_2 - \omega_1$) and the injected signal (ω_1). Fig. 4 shows the measured third IMD data of three different resonator materials, i.e., (Zr,Sn)TiO₄, BaO–PbO–Nd₂O₃–TiO₂, and MgTiO₃–CaTiO₃. Among these, high purity (Zr,Sn)TiO₄ shows a very low distortion level. Consequently, this material finds use in high-power filters for cellular base-stations [33], [34].

IV. DRs

Comprehensive studies of modes in DRs including the mode chart for the cylindrical resonator system were published by Rebsch [35], Courtney [36], Kobayashi [37], [38], Zaki and Atia [39], and others [40]. The DR mode chart, including hybrid

modes is shown in Fig. 5. Such mode charts are very useful as design tools for many applications. Electromagnetic-field distribution for these modes is presented in Fig. 6 [38].

A. Typical Fundamental Single-Mode Resonators

Fundamental resonant modes of DRs commonly considered are the TE_{01δ} mode, TM_{01δ} mode, and TEM mode.

The TEM mode gives the largest size reduction (over 1/20 in volume). Furthermore, the stepped-impedance structure enables additional reduction in size, as well as improvements in spurious response characteristics [41], [42]. However, this mode has the lowest unloaded *Q*. The other two modes reduce the size of the composite resonator to 1/3–1/5 of a conventional air cavity.

V. DR FILTERS

Microwave filters are widely used in radar, satellite, and mobile communication systems. These are typically narrow-band bandpass devices with stringent specifications for passband insertion loss, stopband rejection, power handling, and physical size. They are normally constructed by arranging coupled resonant circuits (resonators) to achieve a specified frequency-selective transfer function [43]. The number of resonators determines the rate of change of attenuation from passband to stopband, i.e., the selectivity. Practical devices may have ten or more resonators. It is well known [44] that the passband insertion loss is proportional to the number of resonators used, i.e., the degree of the filter, and is inversely proportional to the fractional bandwidth and the unloaded *Q* factor (*Qu*) of the resonators. For example, a tenth-degree Chebyshev bandpass filter with a center frequency of 2 GHz and a bandwidth of 10 MHz requires a resonator *Qu* of 25 000 in order to achieve a mid-passband insertion loss of 0.5 dB. This level of difficulty is a relatively common requirement for filters in cellular radio base-stations. A *Qu* of 25 000 is impossible to achieve using a traditional air filled coaxial resonator and would require waveguide resonators that are generally too large at low microwave frequencies.

The first practical DR loaded microwave filter was reported at the 1975 IEEE MTT-S International Microwave Symposium, Palo Alto, CA [45]. Fig. 7 shows the schematic construction of this 6.9-GHz filter. The DR duplexer for marine satellite systems, with isolation between transmitter (Tx) and receiver (Rx) ports of over 90 dB was reported in 1977 [46].

The most commonly used DR structure is still the cylindrical suspended DR structure shown in Fig. 8.

The relative dielectric constant is typically between 20–80 and the DR is remote from the enclosure. At the resonant frequency, most of the electromagnetic energy is stored within the dielectric. The enclosure stops radiation and because the enclosure is remote, the resonant frequency of the structure is largely controlled by the dimensions and dielectric constant of the dielectric. The *Qu* of the resonator is dominated by the loss tangent of the ceramic material. The structure supports a fundamental TE_{01δ}-mode resonance. The field pattern and resonant frequency may be approximately computed by assuming that the lateral surface of the DR behaves as an ideal magnetic conductor. In other words, there is a zero tangential magnetic-field component on the curved surface of the DR. The magnetic wall

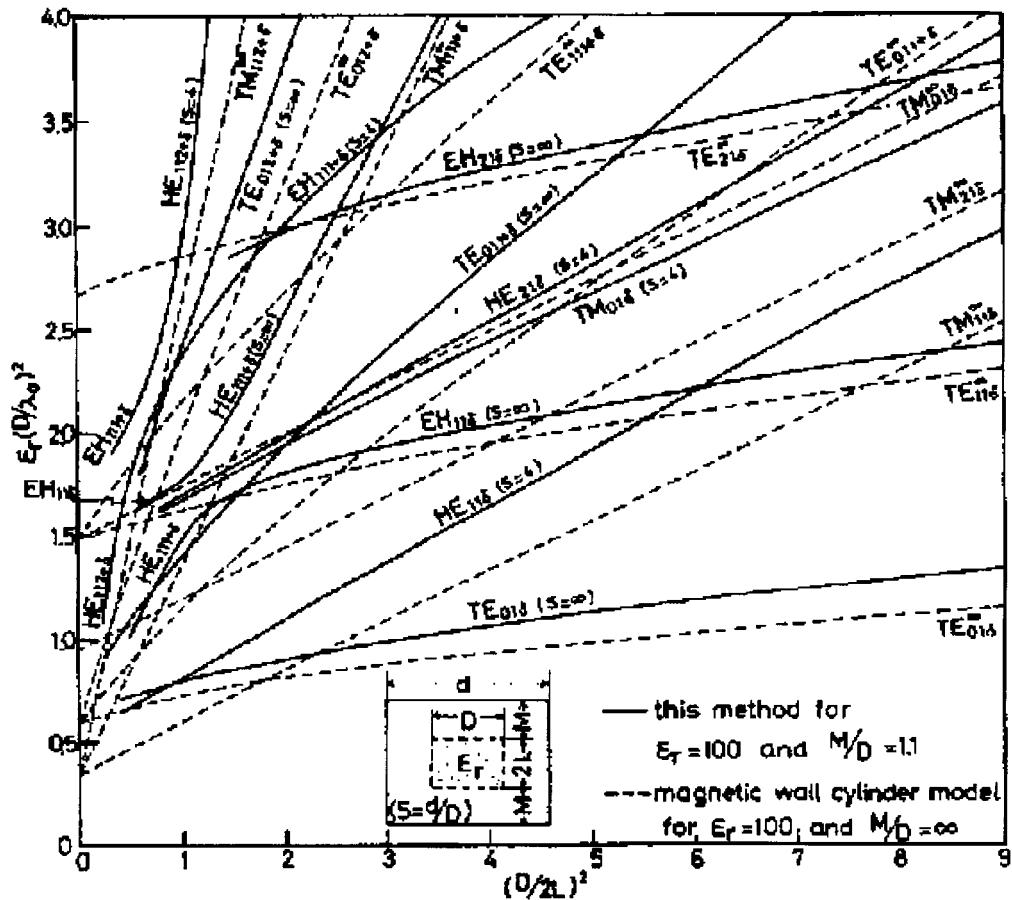


Fig. 5. DR mode chart.

boundary condition is assumed to continue into the air space above and below. The ratio of the fundamental resonant frequency to the first spurious $HE_{11\delta}$ mode resonance is typically 1.3 : 1, although this may be improved to 1.5 : 1 by inserting a hole in the center of the DR. As a greater percentage of magnetic than electric energy leaks from the DR, resonators are coupled magnetically via irises in the filter body. A typical $TE_{01\delta}$ filter for cellular base-station applications is shown in Fig. 9(a), and its measured performance is shown in Fig. 9(b).

Even with a permittivity of 45, a typical 900-MHz resonator occupies a cavity size of $8 \times 8 \times 5$ cm. Thus, size-reduction techniques are of critical importance.

The first significant technique was a dual-mode DR filter, reported by Fiedziuszko in 1982 [47]. A picture of this type of device is shown in Fig. 10. In this case, the dual-degenerate $HE_{11\delta}$ mode is used. Couplings between resonators are via cruciform irises in the filter body, enabling both resonances in each cavity to be coupled to the resonances in adjacent cavities. In this way, filters with complex transfer functions may be realized. These devices are now routinely used in satellite communications applications. Subsequently, this work was extended by Zaki [48], Kobayashi [49] (triple-mode filter) and Guillon [50].

GSM cellular radio base-stations typically need resonators with unloaded Q factors of 5–6000. These are normally realized using coaxial air-filled resonators and are quite large. It is possible to trade off some of the Q_u of the $HE_{11\delta}$ resonator for

some volume reduction by modifying its geometry [51]. By positioning the DRs on the base of a housing, the $HE_{11\delta}$ mode is lowered in frequency and becomes the fundamental mode. A conducting disc may then be placed on top of the DR. The conductor loading on both ends prevents any tangential E field at the top and bottom of the DR. Thus, a good simple model for this structure is the TM_{110} mode, as in ferrite circulators. A typical dual-mode resonator of this type achieved a Q_u of 6300 at 900 MHz in a $6.5 \times 6.5 \times 4$ cm cavity. Typically, devices of this type (shown in Fig. 11) occupy 50% of the volume of an equivalent coaxial filter.

An alternative and interesting structure uses grounded dielectric rods operating in the single mode $TM_{01\delta}$ mode [52]. This provides less volume reduction, but with a simpler physical structure.

Triple mode versions of the $TE_{01\delta}$ resonator are possible in structures with a three-dimensional symmetry. Electrically, the optimum geometry is a sphere, although this would not be optimum in volume manufacture. Alternatively, a dielectric cube can be used if a slightly worse spurious performance can be tolerated. These support triple-mode $TE_{11\delta}$ resonances with a similar Q_u to the $TE_{01\delta}$ mode in approximately one-third of the physical volume per mode. For narrow-band low-loss filters, generalized transfer functions with arbitrary transmission zero locations are needed. This requires multiple cross-couplings between multimode cavities. Fig. 12(a) shows such a filter with

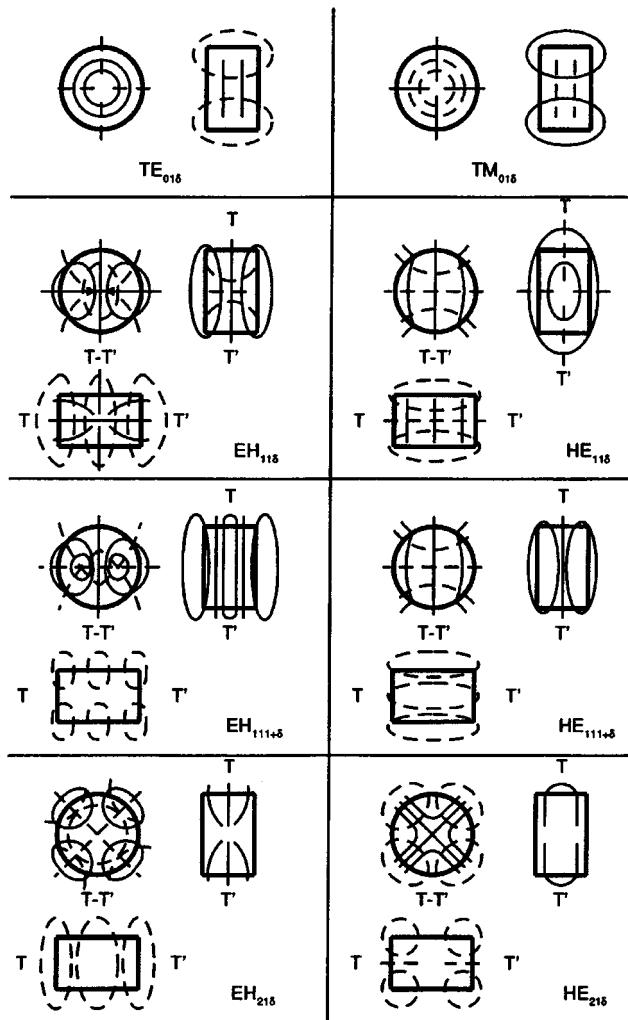


Fig. 6. DR modes.

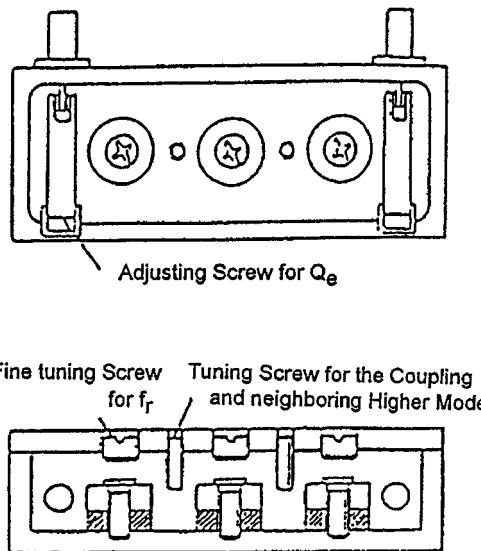


Fig. 7. Structure of 6.9-GHz DR filter.

all transmission zeros at finite frequencies. An alternative [53] approach to synthesize the filter is to use the hybrid reflection filter shown in Fig. 12(b). Here, Y_e and Y_o are the even- and

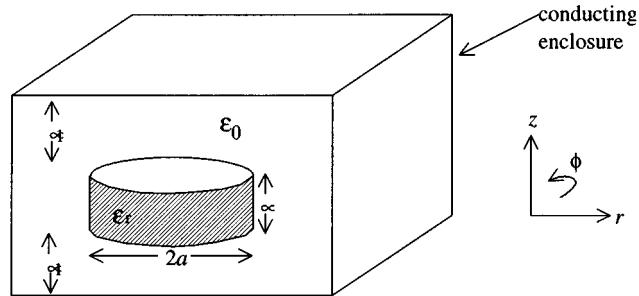
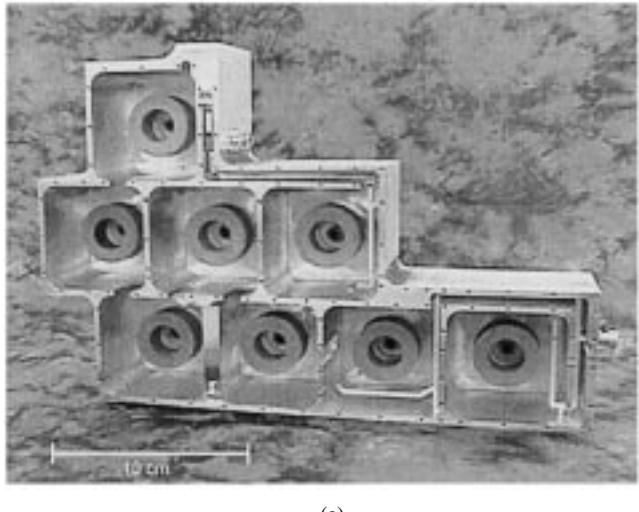
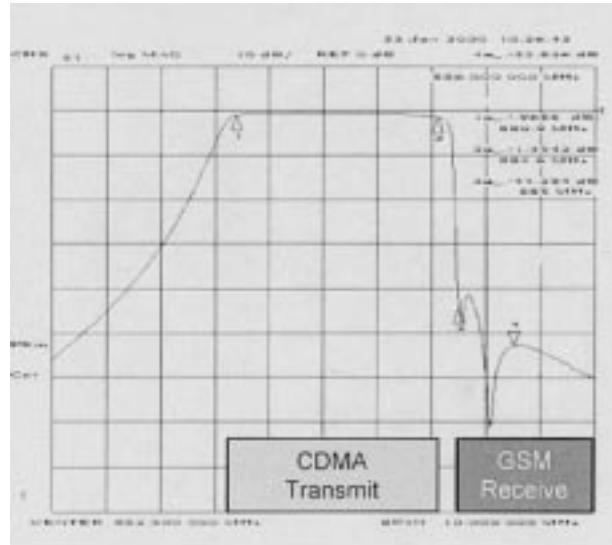




Fig. 8. Commonly used DR structure.

(a)

(b)

Fig. 9. DR filter for cellular base-station. (a) Structure. (b) Measured performance.

odd-mode admittances of the network shown in Fig. 12(a). Both of these can be realized as third-degree ladder networks using a single triple-mode resonator.

It is interesting to note that this device may be converted into a bandpass filter by inserting an extra quarter-wave line in one branch of the hybrid.

A compact bandpass filter having low loss and good spurious characteristics can be constructed by placing high- Q $TM_{01\delta}$ di-

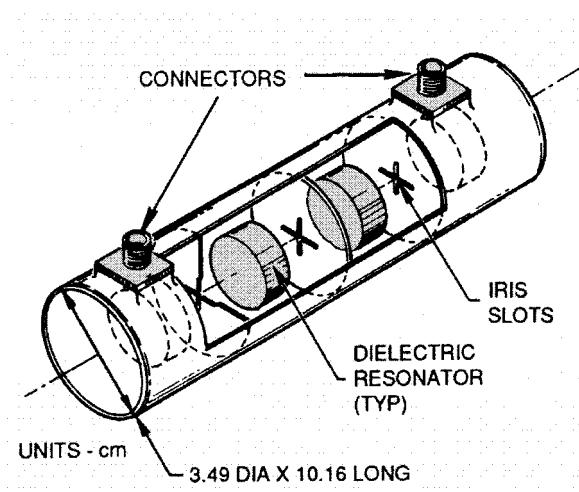
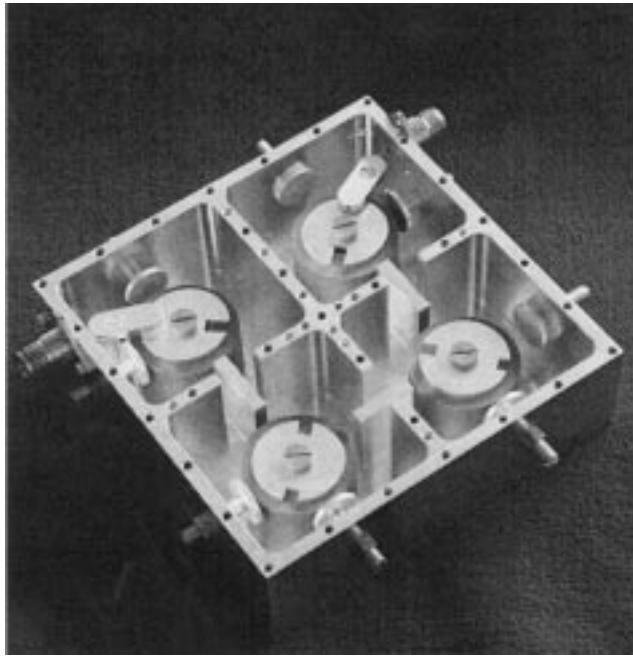
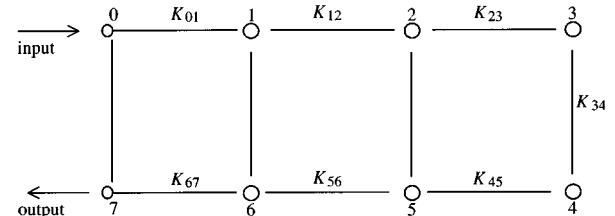
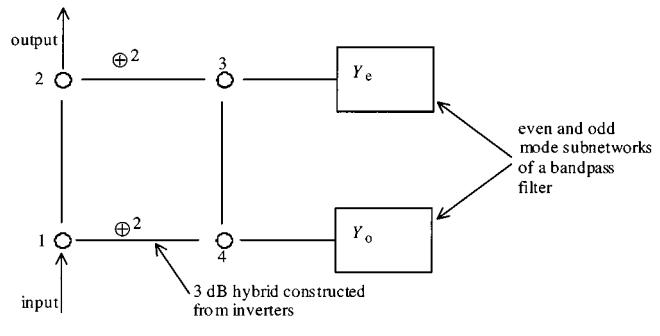


Fig. 10. Dual-mode DR filter configuration.




Fig. 11. Conductor-loaded dual-mode DR filter configuration.

electric rod resonators coaxially in a TM_{01} cutoff circular waveguide, as shown in Fig. 13 [54]. The resonant properties of this resonator compare favorably to a conventional $TE_{01\delta}$ mode DR, particularly in realization of a high unloaded Q . A four-stage filter having bandwidth of 27 MHz at a center frequency of 11.958 GHz was fabricated with an insertion loss of 0.5 dB, which corresponds to an unloaded Q of 17 000, and with no spurious responses in the frequency range below 17 GHz [54], [55].


A. TEM-Mode Filters

For applications requiring a Q_u of less than 1000, partially or completely loaded TEM resonator filters can be used in a very compact configuration [56], [57]. One possible realization is shown in Fig. 14.

Here, circular holes are drilled in a high-permittivity block. They are plated and grounded at one end with the other end left

(a)

(b)

Fig. 12. (a) Coupling diagram for cross-coupled filter. (b) Hybrid reflection filter configuration.

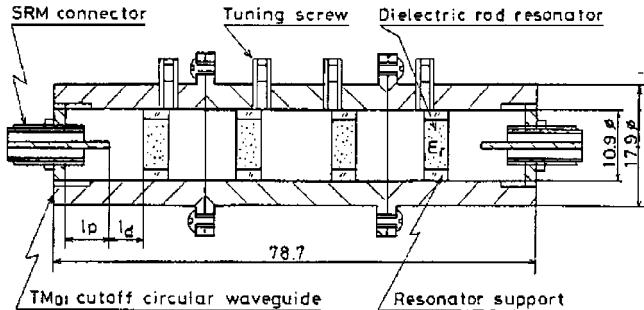


Fig. 13. Construction of TM-mode filter.

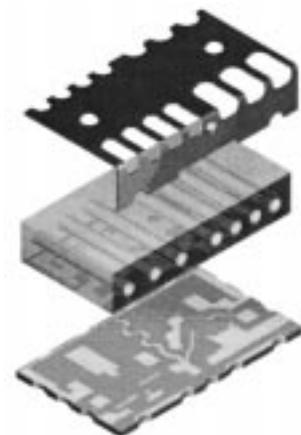


Fig. 14. TEM filter realization.

open. In a homogenous structure, this would result in zero coupling between the resonators. The coupling is created by introducing a layer at different permittivity on one side of the filter, such as a printed circuit board.

There are several reports on bandpass filters using coaxial TEM-mode DRs [58]–[61]. In the last seven years, the size

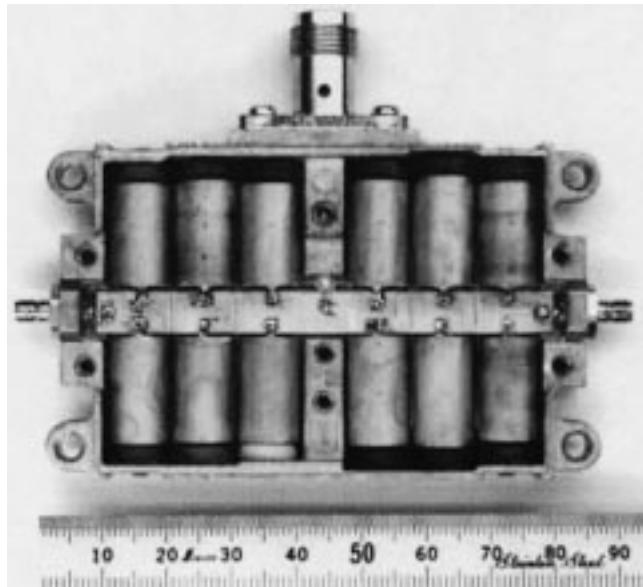


Fig. 15. Antenna duplexer for AMPS systems.

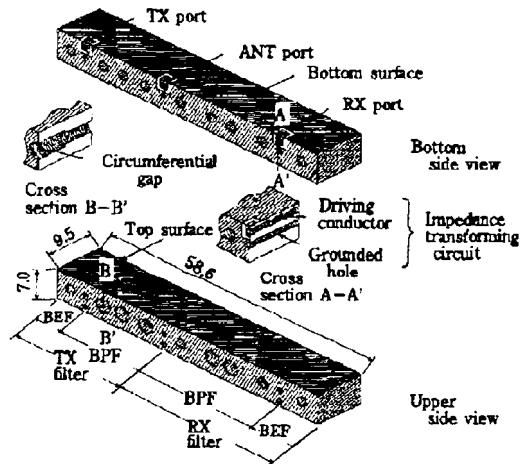


Fig. 16. Structure of monoblock dielectric antenna duplexer for cellular portable phones.

and weight of antenna duplexers for mobile telephone terminals were reduced to about 1/10 by using this technology.

Fig. 15 shows the first generation of an antenna duplexer for the car terminal of an AMPS system. Cu-plated quarter-wavelength TEM-mode resonators are placed in an aluminum case. Resonators and input/output terminals are coupled capacitively by a coupling plate array) [59], [61].

The structure of a filter using the parallel alignment of TEM-mode rectangular resonators was reported by Fukazawa [62], [63].

Dielectric monoblock filters metallized by the copper electroless plating on the surface of a body (except input/output ports) have been reported [64], [65]. Fig. 16 shows the antenna duplexer for cellular portable phones [66].

B. High-Power Filters

Fig. 17 shows the construction of the channel-dropping filter [67]. This type of filter contains high-purity $(\text{Zr}, \text{Sn})\text{TiO}_4$ resonators, which have Q values higher than 40 000 at 900 MHz.

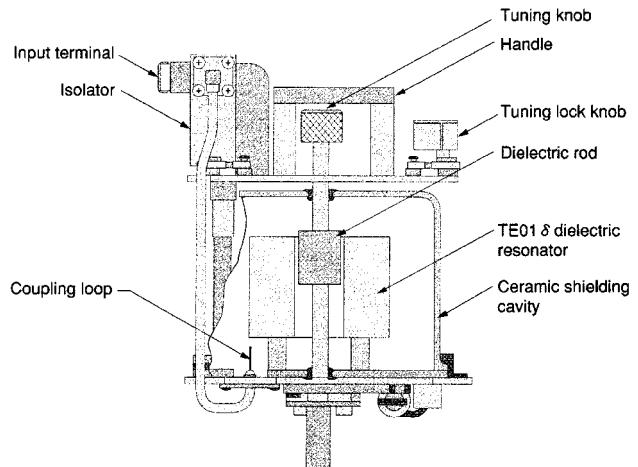


Fig. 17. Structure of high-power channel-dropping filter.

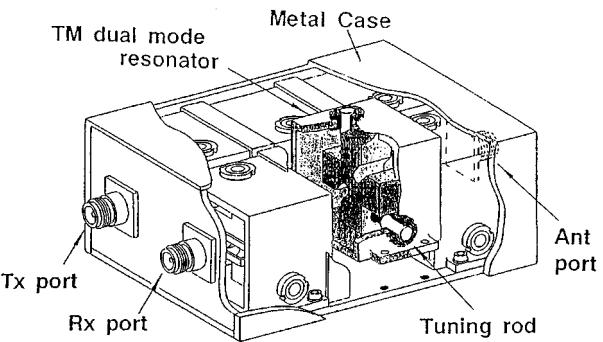


Fig. 18. Structure of dual-mode six-pole combining filter.

The shielding cavity is made of ceramics metallized with fired silver. This filter has high stability versus both temperature and high power of 60 W. The center frequency of this particular filter can be adjusted (even during operation) at the cellular site without changing the filter's basic performance.

For the TM_{110} triple-mode DR, three dominant modes are independent in the intersecting area where their field distributions are orthogonal to each other. The small rods on the resonator axis are used for tuning the resonant frequency. The size of the filter is reduced to almost one-third in volume as compared to a single-mode filter.

Fig. 18 shows the TM_{110} dual-mode high-power duplexer [68], [69]. Under RF power of 500 W, the temperature rise of this filter was 15 °C, the increase of the insertion loss was 0.03 dB, and the level of the third-order intermodulation was less than -170 dBc, which was the limit of the sensitivity of the measurement system. The Tx filter consisted of four sections, one TM_{110} dual mode and two TM_{110} single-mode DRs placed in a TE_{10} rectangular waveguide below cutoff. The Rx filter consisted of six sections; three TM_{110} dual-mode DRs. The size of the duplexer was $250 \times 140 \times 60$ mm 3 , which is about 20% of a conventional air cavity type duplexer.

The DR filter, as shown in Fig. 19, is constructed of one-quarter of a $\text{TE}_{01\delta}$ -mode dielectric ring resonator [70]. As a shielding conductor, two metallized ceramic substrates are used to eliminate the stress due to the thermal expansion between resonator and cavity. Another feature of this structure is that the

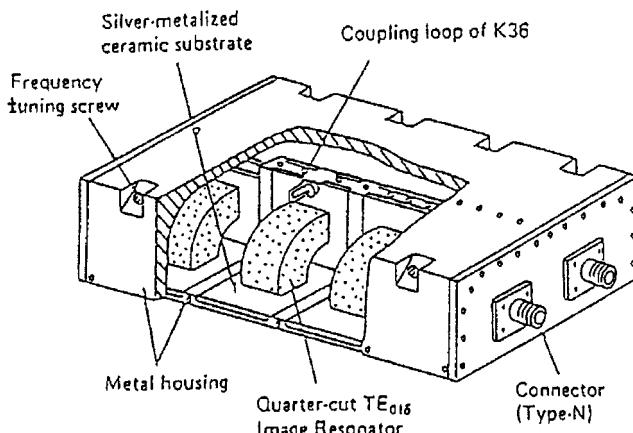


Fig. 19. Construction of quarter-cut image resonator filter.

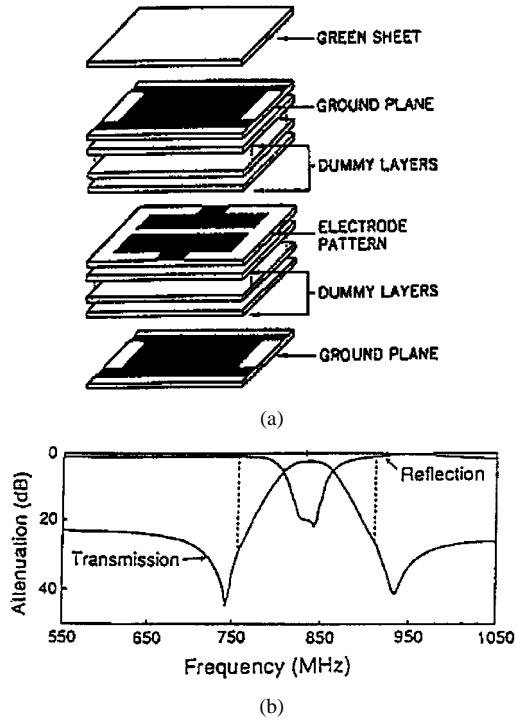


Fig. 20. Configuration and characteristics of semilumped *LC* multilayer filter. Insertion loss: 4 dB. Volume: 0.07 cm^3 . Dimension: $5.7 \times 5.0 \times 2.5 \text{ mm}$.

mirror walls act as the heat conductor between the resonator and the heat sink or heat radiator. This allows higher power operation and the suppression of spurious responses.

C. Multilayer Circuit Modules

By combining planar circuit technology with multilayer ceramic substrate and packaging technologies, several types of microwave hybrid circuit components and modules have been developed [71]. Low-temperature cofired ceramic (LTCC) technology enables the design of Cu wired multilayer substrates.

1) *Chip LC Filters and Multichip Modules (MCM)*: Fig. 20 shows the schematic drawing of construction and characteristics of a semilumped circuit *LC* filter using LTCC technology. The size is $5.7 \times 5.0 \times 2.5 \text{ mm}^3$ [72], and various LTCC filters were

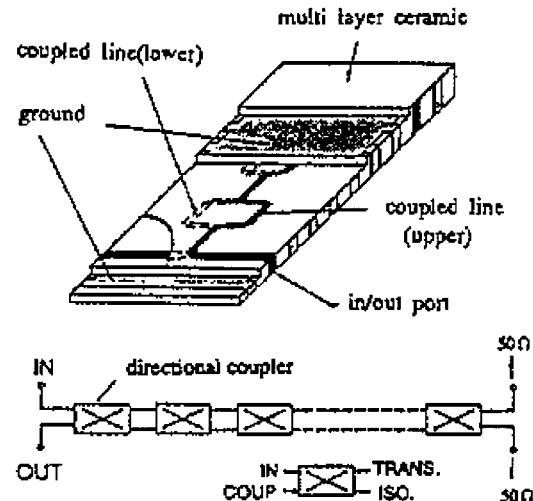


Fig. 21. Structure of multilayer transversal filter.

reported for portable telephone applications [72]–[74]. Multi-chip module (MCM) substrates and devices with embedded resistor, capacitor, and inductor elements in the interlayer were presented in [75]–[78].

2) *Transversal Filters*: Fig. 21 shows a multilayer transversal filter using high-*K* and low-loss ceramics [79], [80]. By using the stripline in this design instead of a microstrip, radiation loss is eliminated. This provides higher *Q* and lower coupling with other circuit elements. Due to the fact that this is a nonresonant transmission-type device, insertion loss is remarkably reduced as compared to the case of an energy-storing resonator-type filter.

D. Dielectric Antennas

Several types of miniature antennas are now in use. A microstrip antenna (or patch antenna) for the Rx of a global positioning system (GPS) using a high-*K* dielectric substrate has several advantages such as small size, narrow frequency band, and good temperature stability. This antenna has axially symmetric gain characteristics around its vertical axis, therefore, it is highly useful to receive signals from any direction.

Fig. 22 shows the schematic structure of a dielectric chip antenna for mobile telephone terminals. The antenna gain is lower than that of a conventional whip antenna, nevertheless it is high enough for a microcell system. This type of antenna would be the key for future miniaturization of handset or small-office local area network (LAN) system.

VI. APPLICATION TO ACTIVE DEVICES

A. Active DR Filters

In an active filter configuration by the use of an active feedback resonator method, a DR intrinsic *Q* of 1500 was increased to over 50 000. This enabled the realization of a small size 800-MHz-band receiving filter with a sharp stopband. The center frequency of the filter is 845.75 MHz, stopband width is 1.0 MHz, rejection is 30 dB, and the size is $55 \times 180 \times 25 \text{ mm}^3$ [81]. The overall filtering assembly consists of a dielectric antenna filter and three active band-stop filters,

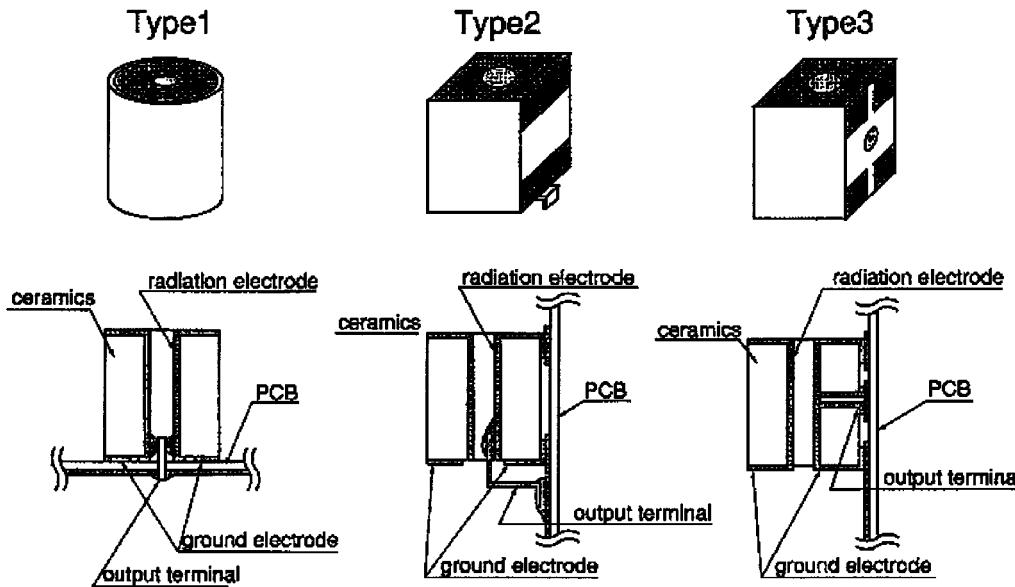


Fig. 22. Typical structures of dielectric block antenna for cell phone hand set.

each sharply eliminating one band in the passband. The active band-stop filter was designed to obtain maximum stability and an optimum noise figure of the assembly.

The center frequency of the filter changes within ± 30 kHz and the noise figure in the passband is adequately small. The size of the dielectric receiving filter assembly is $480 \times 250 \times 44$ mm³, and this volume is less than 1/20 of a conventional filter using cavity resonators [82].

B. DR Oscillators

High-*Q* temperature-stable DRs can be used as stabilizing elements for microwave oscillators. This application was first proposed by Day [83]. In 1977, a 4-GHz Ba₂Ti₉O₂₀ resonator integrated with an Si bipolar transistor in a compact oven demonstrated a frequency stability of 5 ppm/yr, 4 °C–60 °C (40°–40°). This fundamental frequency oscillator is significantly simpler than alternative generators and has 10–20 dB lower phase noise [84]. An 18-GHz generator was also described, which uses a 4.5-GHz oscillator circuit and a varactor quadrupler. Currently, DR materials of the BaO–TiO₂, SnO₂–TiO₂–ZrO₂ or SrO–Nb₂O₅–TiO₂ systems offer the best combination of properties for microwave applications [85].

A 6 GHz, a GaAs FET feedback oscillator stabilized by a DR with a new frequency tuning mechanism has been developed in [86]. The oscillator has a frequency tuning range of 50 MHz with a frequency stability of approximately 10 ppm (0 °C–50 °C).

Using the higher *Q* DR, temperature-stable oscillators either of fixed or tunable frequency were demonstrated in [87] at *X*-band frequencies.

VII. FERROELECTRIC DEVICES

Ferroelectrics are dielectric materials characterized by having a dielectric constant that is a strong function of applied electric fields and temperature. In spite of their name, they contain no iron. Rather, the name stems from the fact that their behavior is

superficially the electrical analog of ferrites. That is, they exhibit a *D*–*E* loop. A detailed explanation of the physics and chemistry of ferroelectrics is beyond the scope of this paper, but the following gives the basic idea. In some crystals, the positive and negative ions can have two equilibrium positions. Each of these positions produces a different net electrical polarization. Beginning with a random spatial distribution of these orientations within a sample, there will be some value of net polarization. If an electric field is applied to the crystal, the ions will move to the position that is more energetically favorable. If the electric field is then reversed, a certain minimum amount of energy must be overcome before the ions can move to the other equilibrium position. This gives rise to the hysteresis behavior of polarization *P* versus the applied electric field *E*, similar to the hysteresis in magnetic flux *B* versus magnetizing field *H* seen in ferrites. A remanent polarization and coercive field characterize the *P*–*E* loop. Above the so-called Curie temperature, thermal agitation causes spontaneous movement of the ions from one state to the other, and the material then behaves as a conventional dielectric. Above the Curie temperature, these materials are often referred to as paraelectric. Representative properties of some ferroelectrics used at microwave frequencies are given in Table II.

Ferroelectrics have many uses in electronics. They are often used in capacitors because of their relatively high dielectric constant, and in memory circuits because of their hysteresis. Some ferroelectrics are also piezoelectric, enabling their use as mechanical transducers. Others are pyroelectric, generating a surface charge due to application of heat. Numerous microwave circuits have been developed that take advantage of the ability to control the dielectric constant by varying an applied electric field. We will here restrict our discussion to the RF and microwave applications of the ferroelectric effect alone. Some of these, such as phase shifters, are essentially linear in nature, treating the dielectric constant as a parameter controllable by an external bias field. Other applications, including mixers and parametric amplifiers, make use of the inherent nonlinearity of the dielectric constant. Comparing these two classes may

TABLE II
REPRESENTATIVE PROPERTIES OF SOME FERROELECTRICS USED AT
MICROWAVE FREQUENCIES

Ferroelectric	Curie Temp	ϵ_r	$\tan \delta @ 10$ GHz	$\Delta\epsilon/\epsilon$	Temp
SrTiO_3	N/A	6000	0.0004	50% @ 1 V/ μm	40 K
$\text{Ba}_{0.5}\text{Sr}_{0.5}\text{TiO}_3$	-30 °C	1100	0.02	25% @ 2 V/ μm	25 °C

be likened to distinguishing between p-i-n diodes and varactor diodes.

VIII. HISTORICAL PERSPECTIVE

Ferroelectric behavior in materials was first observed in Rochelle salt in the 1920s. Barium titanate was recognized as a practical ferroelectric in 1942–1943 by von Hippel and co-workers at the Massachusetts Institute of Technology (MIT) [88].

Review of this TRANSACTIONS and the *IEEE Microwave Theory and Techniques Society (IEEE MTT-S) International Microwave Symposium Digests* reveals two distinct periods of activity. The first stretched from approximately 1958 to the 1960s. Morgenthaler [89] and Coleman and Becker [90] discussed the possibility of ferroelectric phase modulators and mixers in 1958. DiDomenico and Pantell [91] described an *X*-band waveguide ferroelectric phase shifter in 1962. They achieved 50° of variable phase shift with 2–6-dB insertion loss. Fig. 23 shows their measured phase shift versus the applied bias field. In the same year, Cohn and Eikenberg described a stripline phase shifter for 100–1000 MHz, achieving 348° with 3.7–2.2-dB loss. They described a PbTiO_3 – SrTiO_3 HF–UHF power limiter capable of handling 25-kW peak power in 1964 [92]. The application of ferroelectrics by DiDomenico as a millimeter-wave harmonic generator is reported in a review paper in 1963 [93]. Das described their use in parametric amplifiers in 1965 [94]. Amoss *et al.* [95] described a low-power *L*-band switch using PbTiO_3 – SrTiO_3 elements in diode-like packages in 1965. They achieved 40-dB isolation and 1-dB insertion loss with a 1000-V control. Alday *et al.* described ferroelectric and pyroelectric millimeter-wave detectors [96] in 1966. Another limiter utilizing a packaged ferroelectric element was described by Horton and Donaldson in 1967 [97]. Van Doeren utilized ferroelectrics to rotate wave polarization in 1966 [98]. An *S*-band microstrip phase shifter using PbTiO_3 – SrTiO_3 was described by Das in 1967 [99]. Measurement techniques for dielectric constant and loss tangent were discussed by Horton and Burdick in 1968 [100]. Variable delay lines were investigated by Kirchner [101] and by Squire *et al.* [102] in 1969.

Although work using the titanates in DRs continued, little new work utilizing the unique properties of ferroelectric materials was reported until 1993. Beall, Ono, and Price made tunable *X*-band microstrip resonators by combining the low loss of superconductors with thin film SrTiO_3 , in contrast to the bulk ceramic most often used previously [103]. Cho combined piezoelectric and ferroelectric effects in a surface-acoustic-wave convolver in 1994 [104]. In 1995, Jackson *et al.* [105] described a

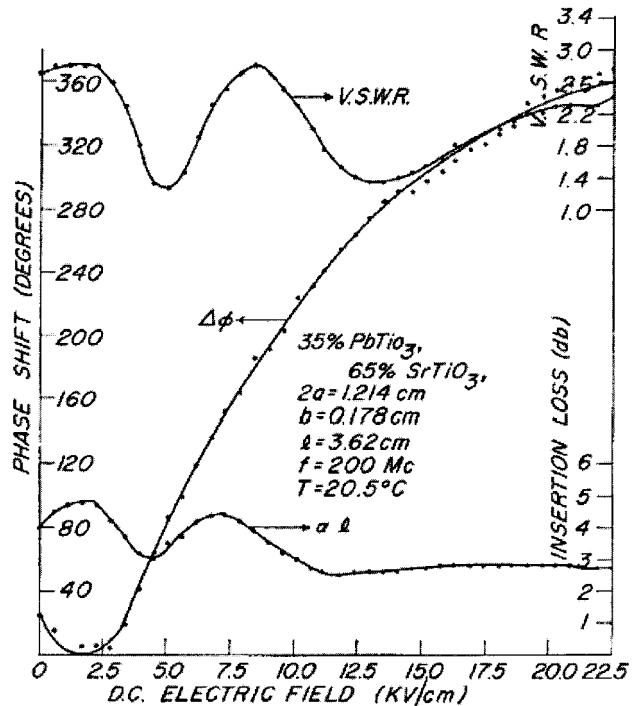


Fig. 23. Measured performance of the ferroelectric phase shifter; $f = 200$ Mc, $T = 20.5$ °C.

coplanar waveguide *X*-band phase shifter producing 150° phase shift with a 30-V bias at 60 K. A finite-element analysis of microstrip lines on BaTiO_3 – SrTiO_3 substrates was reported by Sung *et al.* [106]. Abbas *et al.* discussed a model of a ferroelectric superconducting phase shifter in 1996 [107]. The preparation of various titanates by the sol-gel process was reported by DeFlaviis *et al.* and, in 1997, they reported devices with 165° phase shift and less than 3-dB loss at 2.4 GHz [108]. In 1998, Subramanyam *et al.* used SrTiO_3 in a 19-GHz tunable bandpass filter, controlled by a 400-V bias [109]. Nonlinear effects including IMD and detuning were studied by Kozyrev *et al.* [110]. Superconductors were again combined with ferroelectrics to make tunable filters for 0.5–2 GHz, by Gevorgian *et al.* [111]. A coupled microstrip approach was used in a *Ku*-band phase shifter with BaTiO_3 – SrTiO_3 by Van Keuls *et al.* [112]. Coplanar waveguides were revisited by Carlsson and Gevorgian in 1999 [113].

Most recently, the Defense Advanced Research Projects Agency (DARPA) has sponsored the Frequency Agile Materials for Electronics (FAME) Consortium, in which a large number of companies, governmental, and educational institutions have cooperated to investigate the use of ferroelectrics (among other phenomena) to produce novel electronic control devices. The microwave device efforts in this program have concentrated on phase shifters, tunable filters, oscillators, and antennas. The emphasis of the program is a reduction of the relatively high loss tangent of ferroelectric materials at microwave frequencies, even when operated above their Curie temperatures, which has been the main barrier to implementation. Much of this work was covered in a special session and a workshop at the 2000 IEEE MTT-S International Microwave Symposium. In the long run, the tunable dielectric constant available in ferroelectric

materials promises to enable a number of simple low-cost microwave control devices.

IX. FUTURE

Dielectric materials are being extensively used at frequencies ranging from low RF (capacitors) to optical (optical fibers).

Applications of dielectric materials in various microwave components are very cost effective and lead to significant miniaturization, particularly when microwave integrated circuit (MIC) or monolithic microwave integrated circuit (MMIC) structures are used. Excellent performance in filters and oscillators is currently being achieved. DRs are widely used in wireless communication systems. Additional applications include dielectric or superconductor testing and antenna applications using radiating DRs. Miniature dielectric-filled coaxial resonators are commonly used in wireless headsets (cellular and personal communication system (PCS) phones). Recently available very high-*Q* materials will extend commercial applications of DRs to much higher frequencies. Applications as high as 100 GHz are being reported. Activity in DR technology is continuing at a very rapid pace, generating a large number of patents and papers.

Availability of higher dielectric-constant materials (80–100) has a significant impact on lower frequency microwave devices (1-GHz region). Such DRs are used in practically all cellular and PCS base-stations. Improvements in technology of ferroelectric materials will lead to a new class of wide-range tunable devices while maintaining high-*Q* characteristics.

However, further material development is needed, mostly in dielectric materials with lower dielectric constants that are used to mount DRs. New low-loss plastics and adhesives should be developed to ensure that the excellent properties of DR ceramics are not degraded.

DRs are here to stay, and a wide variety of commercial wireless components using these elements is readily available. With the advent of new materials and improved circuit techniques, the field of DRs will continue to develop and will certainly be exciting in the future.

REFERENCES

- [1] K. S. Packard, "The origin of waveguides: A case of multiple rediscovery," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, pp. 961–969, Sept. 1984.
- [2] G. C. Southworth, "Transmission of guided waves," U.S. Patent 2 106 769, Aug. 23, 1935.
- [3] R. D. Richtmyer, "Dielectric resonators," *J. Appl. Phys.*, vol. 15, pp. 391–398, 1939.
- [4] H. M. Schlicke, "Quasidegenerate modes in high-*e* dielectric cavities," *J. Appl. Phys.*, vol. 24, pp. 187–191, Feb. 1953.
- [5] A. Okaya, "The Rutile microwave resonator," *Proc. IRE*, vol. 48, p. 1921, Nov. 1960.
- [6] A. Okaya and L. F. Barash, "The dielectric microwave resonator," *Proc. IRE*, vol. 50, pp. 2081–2092, Oct. 1962.
- [7] S. B. Cohn, "Microwave bandpass filters containing high *Q* dielectric resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-16, pp. 218–227, Apr. 1968.
- [8] D. J. Masse *et al.*, "A new low loss high-*k* temperature compensated dielectric for microwave applications," *Proc. IEEE*, vol. 59, pp. 1628–1629, Nov. 1971.
- [9] Y. Konishi, "Microwave dielectric resonator," (in Japanese), NHK (Nippon Hoso Kyokai), Tokyo, Japan, Tech. Rep., 1971.
- [10] J. K. Plourde, D. F. Linn, H. M. O'Bryan, Jr., and J. Thompson, Jr, "Ba₂Ti₉O₂₀ as a microwave dielectric resonator," *J. Amer. Ceram. Soc.*, vol. 58, pp. 418–420, Oct.–Nov. 1975.
- [11] K. Wakino, M. Katsube, H. Tamura, T. Nishikawa, and Y. Ishikawa, "Microwave dielectric materials" (in Japanese), in *IEE Four Joint Conv. Rec.*, 1977, Paper 235.
- [12] T. Itoh, "Dielectric waveguide-type millimeter-wave integrated circuits," in *Infrared and Millimeter Waves*, K. Button and J. Wiltse, Eds. New York: Academic, 1981, vol. 4, ch. 5.
- [13] T. Yoneyama and S. Nishida, "Nonradiative dielectric waveguide for millimeter-wave integrated circuits," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-29, pp. 1188–1192, Nov. 1981.
- [14] A. Hessel, "General characteristics of traveling-wave antennas," in *Antenna Theory*, R. Collin and F. Zucker, Eds. New York: McGraw-Hill, 1969, pt. II, ch. 19, pp. 151–258.
- [15] T. Itoh and F.-J. Hsu, "Distributed Bragg reflector Gunn oscillators for dielectric millimeter-wave integrated circuits," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 514–518, May 1979.
- [16] K. Wakino, "High frequency dielectrics and their applications," in *Proc. 6th IEEE Int. Applicat. Ferroelect. Symp.*, 1986, pp. 97–106.
- [17] W. G. Spitzer, R. C. Miller, D. A. Kleinman, and L. E. Howarth, "Far infrared dielectric dispersion in BaTiO₃, SrTiO₃, and TiO₂," *Phys. Rev.*, vol. 126, pp. 1710–1721, 1962.
- [18] B. W. Hakki and P. D. Coleman, "A dielectric resonator method of measuring inductive capacitance in the millimeter range," *IRE Trans. Microwave Theory Tech.*, vol. MTT-8, pp. 402–410, Apr. 1960.
- [19] Y. Kobayashi and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric resonator method," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, pp. 586–592, July 1985.
- [20] H. M. O'Bryan, Jr., J. Thomson, Jr., and J. K. Plourde, "A new BaO–TiO₂ compound with temperature-stable high permittivity and low microwave loss," *J. Amer. Ceram. Soc.*, vol. 57, pp. 450–453, 1974.
- [21] S. Nishigaki, S. Yano, H. Kato, T. Hirai, and T. Nonomura, "BaO–TiO₂–WO₃ microwave ceramics and crystalline BaWO₄," *J. Amer. Ceram. Soc.*, vol. 71, pp. C-11–C-17, 1988.
- [22] K. Wakino, K. Minai, and H. Tamura, "Microwave characteristics of (Zr,Sn)TiO₄ and BaO–PbO–Nd₂O₃–TiO₂ dielectric resonator," *J. Amer. Ceram. Soc.*, vol. 67, pp. 278–281, 1984.
- [23] G. Wolfram and H. E. Goebel, "Existence range, structural and dielectric properties of Zr_x–Ti_y–Sn_z–O₄ ceramics (x + y + z = 4)," *Mat. Res. Bull.*, vol. 16, pp. 1455–1463, 1981.
- [24] N. Michiura, T. Tatekawa, Y. Higuchi, and H. Tamura, "Role of donor and acceptor ions in the dielectric loss tangent of (Zr_{0.8}Sn_{0.2})TiO₄ dielectric resonator material," *J. Amer. Ceram. Soc.*, vol. 78, pp. 793–796, 1995.
- [25] S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, and S. Hayakawa, "Dielectric properties of Ba(Zn,Ta)O₃–Ba(Zn,Nb)O₃ ceramic," *Proc. Ferroelect. Mater. Applicat.*, vol. 1, pp. 293–296, 1977.
- [26] S. Nomura, K. Toyama, and K. Tanaka, "Ba(Mg_{1/3}Ta_{2/3})O₃ ceramics with temperature-stable high dielectric constant and low microwave loss," *Jpn. J. Appl. Phys.*, vol. 21, pp. L624–626, 1982.
- [27] H. Tamura, D. A. Sagala, and K. Wakino, "High-*Q* dielectric resonator material for millimeter-wave frequency," in *Proc. 3rd U.S.–Japan Seminar Dielectric Piezoelectric Ceram.*, 1986, pp. 69–72.
- [28] S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, "Ba(Zn,Ta)O₃ ceramic with low dielectric loss," *J. Amer. Ceram. Soc.*, vol. 66, pp. 421–423, 1983.
- [29] H. Tamura, T. Konoike, and K. Wakino, "Improved high-*Q* dielectric resonator with complex perovskite structure," *J. Amer. Ceram. Soc.*, vol. 67, pp. C-59–61, 1984.
- [30] D. Kolar, Z. Stadler, S. Gabersek, and D. Suvorov, "Ceramic and dielectric properties of selected compositions in the BaO–Nd₂O₃–TiO₂ system," *Ber. Dt. Keram. Ges.*, vol. 55, pp. 346–348, 1878.
- [31] S. Nishigaki, H. Kato, S. Yano, and R. Kamimura, "Microwave dielectric properties of (Ba,Sr)O–Sm₂O₃–TiO₂ ceramics," *Amer. Ceram. Soc. Bull.*, vol. 66, pp. 1405–1410, 1987.
- [32] T. Nishikawa, Y. Ishikawa, J. Hattori, and Y. Ida, "Measurement method of intermodulation distortion of dielectric materials by using resonator method" (in Japanese), *J. Inst. Electron. Inf. Commun. Eng.*, vol. J27-C-1, pp. 650–658, 1989.
- [33] H. Tamura, J. Hattori, T. Nishikawa, and K. Wakino, "Third harmonic distortion of dielectric resonator materials," *Jpn. J. Appl. Phys.*, vol. 28, pp. 178–181, 1989.
- [34] ———, "Third harmonic distortion of dielectric resonator material," *Jpn. J. Appl. Phys.*, vol. 28, pp. 2528–2531, 1989.

- [35] D. L. Rebsch, D. C. Webb, R. A. Moore, and J. D. Cowlishaw, "A mode chart for accurate design of cylindrical dielectric resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-13, pp. 468–469, May 1965.
- [36] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-18, pp. 476–485, Aug. 1970.
- [37] Y. Kobayashi and S. Tanaka, "Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-28, pp. 1077–1085, Oct. 1980.
- [38] Y. Kobayashi, N. Fukuoka, and S. Yoshida, "Resonant modes of a shielded dielectric rod resonator," *J. Inst. Electron. Inf. Commun. Eng.*, vol. J64-B, no. 5, pp. 433–440, 1981.
- [39] K. A. Zaki and A. E. Atia, "Modes in dielectric-loaded waveguides and resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-31, pp. 1039–1045, Dec. 1983.
- [40] K. A. Zaki and C. Chen, "New results in dielectric-loaded resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-34, pp. 815–824, July 1986.
- [41] M. Sagawa, M. Makimoto, and S. Yamashita, "A design method of bandpass filters using dielectric-filled coaxial resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, pp. 152–157, Feb. 1985.
- [42] M. Makimoto and S. Yamashita, "Bandpass filters using parallel coupled strip-line stepped impedance resonators," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 1, 1980, pp. 141–143.
- [43] G. Matthaei, L. Young, and E. M. T. Jones, *Microwave Filters, Impedance-Matching Networks, and Coupling Structures*. Norwood, MA: Artech House, pp. 421–519.
- [44] I. Hunter, *Theory and Design of Microwave Filters*, ser. IEE Electromag. Wave. London, U.K.: IEE Press, pp. 125–131.
- [45] K. Wakino, T. Nishikawa, S. Tamura, and Y. Ishikawa, "Microwave bandpass filters containing dielectric resonator with improved temperature stability and spurious response," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1975, pp. 63–65.
- [46] T. Kimura, K. Kobayashi, N. Ohkoumyou, T. Nishikawa, T. Tamura, and Y. Itoh, "Diplexer of earth station for the marine satellite communication systems," *J. Inst. Electron. Inf. Commun. Eng.*, vol. 96, p. 55, Nov. 1977.
- [47] S. J. Fieduszko, "Dual-mode dielectric resonator loaded cavity filters," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-30, pp. 1311–1316, Sept. 1982.
- [48] K. Zaki, C. Chen, and A. E. Atia, "Canonical and longitudinal dual-mode dielectric resonator filters," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-35, pp. 1130–1134, Dec. 1987.
- [49] Y. Kobayashi and K. Kubo, "Canonical bandpass filters using dual-mode dielectric resonators," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1987, pp. 137–140.
- [50] J. P. Astier and P. Guillon, "Elliptic microwave filter using dual modes of dielectric resonators," in *European Microwave Conf. Dig.*, Sept. 1985, pp. 335–340.
- [51] I. C. Hunter, J. D. Rhodes, and V. Dassonville, "Dual mode filters with conductor loaded dielectric resonators," *IEEE Trans. Microwave Theory Tech.*, vol. 42, pp. 2304–2311, Dec. 1999.
- [52] C. Wang, K. A. Zaki, A. E. Atia, and T. G. Dolan, "Dielectric combline resonators and filters," *IEEE Trans. Microwave Theory Tech.*, vol. 46, pp. 2501–2506, Dec. 1998.
- [53] I. C. Hunter, J. D. Rhodes, and V. Dassonville, "Triple-mode dielectric resonator hybrid reflection filters," *Proc. Inst. Electr. Eng.*, pt. H, vol. 145, pp. 337–343, Aug. 1998.
- [54] Y. Kobayashi and M. Minegishi, "A bandpass filter using electrically coupled $TM_{01\delta}$ dielectric rod resonators," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1988, pp. 507–510.
- [55] —, "A low-loss bandpass filter using electrically coupled high- Q $TM_{01\delta}$ dielectric rod resonators," *IEEE Trans. Microwave Theory Tech.*, vol. 36, pp. 1727–1732, Dec. 1988.
- [56] S. Yamashita and M. Makimoto, "Miniaturized coaxial resonator partially loaded with high-dielectric constant microwave ceramics," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-31, pp. 697–703, Sept. 1983.
- [57] S. Kobayashi and K. Saito, "A miniaturized ceramic bandpass filter for cordless phone systems," in *IEEE Int. Microwave Symp. Dig.*, vol. 2, 1995, pp. 391–394.
- [58] K. Wakino, T. Nishikawa, H. Matsumoto, and Y. Ishikawa, "Miniaturized bandpass filters using half wave dielectric resonators with improved spurious response," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1978, pp. 230–232.
- [59] —, "Quarter wave dielectric transmission line duplexer for land mobile communications," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1979, pp. 278–280.
- [60] K. Wakino and Y. Konishi, "Bandpass filter with dielectric materials used for broadcasting channel filter," *IEEE Trans. Broadcast.*, vol. BC-6, June 1980.
- [61] H. Matsumoto, "Technical trend of dielectric filters," in *EIC Microwave Workshop Dig.*, 1995, pp. 386–391.
- [62] A. Fukazawa, "Miniaturized dielectric radio frequency filter for 850 MHz band mobile radio," in *IEEE Veh. Technol. Conf.*, Mar. 1979, pp. 181–186.
- [63] A. Fukazawa, T. Sato, and K. Hosoda, "Miniaturized microwave filter construction with dielectric-loaded resonator and space coupling," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1981, pp. 209–211.
- [64] H. Matsumoto, H. Ogura, and T. Nishikawa, "A miniaturized dielectric monoblock bandpass filter for 800 MHz band cordless telephone system," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1994, pp. 249–252.
- [65] H. Katoh, H. Matsumoto, and T. Nishikawa, "A miniaturized and high performance dielectric monoblock filter for digital cordless telephone system," in *Proc. Asia-Pacific Microwave Conf.*, vol. 2–3, 1994, pp. 71–74.
- [66] H. Matsumoto, T. Tsujiguchi, and T. Nishikawa, "A miniaturized dielectric monoblock duplexer matched by the buried impedance transforming circuit," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1995, pp. 1539–1542.
- [67] K. Wakino, T. Nishikawa, Y. Ishikawa, and H. Tamura, "800 MHz band miniaturized channel dropping filter using low loss dielectric resonator," in *IEEE Conf. Dig.*, vol. 24, Densi Tokyo, Japan, 1985, pp. 72–75.
- [68] Y. Ishikawa, J. Hattori, M. Andoh, and T. Nishikawa, "800 MHz high power duplexer using TM dual-mode dielectric resonators," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. II-3, 1992, pp. 11 617–11 620.
- [69] —, "800 MHz high power bandpass filter using TM dual mode dielectric resonators," in *Proc. 21st Eur. Microwave Conf.*, vol. 2, 1991, pp. 1047–1052.
- [70] T. Nishikawa, K. Wakino, K. Tsunoda, and Y. Ishikawa, "Dielectric high-power bandpass filter using quarter-cut $TE_{01\delta}$ image resonator for cellular base stations," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-35, pp. 1150–1155, Dec. 1987.
- [71] T. Nishikawa, "RF front end circuit components miniaturized using dielectric resonators for cellular portable telephones," *Trans. Inst. Electron. Inf. Commun. Eng. E*, vol. 74, no. 6, pp. 1556–1562, 1991.
- [72] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, "A miniaturized dual band filter using ceramic lamination technique for dual mode portable telephones," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1997, pp. 789–792.
- [73] A. Bailey, W. Foley, M. Hageman, C. Murray, A. Piloto, K. Sparks, and K. Zaki, "Miniature LTCC filters for digital receivers," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 2, 1997, pp. 999–1002.
- [74] T. Ishizaki, T. Yamada, and H. Miyake, "A first practical model of very small and low insertion loss laminated duplexer using LTCC suitable for W-CDMA portable telephones," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 2, 2000, pp. 187–190.
- [75] M. Ida, H. Suzuki, T. Yamanaka, and T. Nishikawa, "L-band power amplifier module by using ceramic multi-layer substrate," in *IEEE AP-S Int. Symp. Dig.*, Dec. 1993, pp. 1013–1–16.
- [76] M. Ida, S. Kawashima, T. Haga, H. Suzuki, and T. Nishikawa, "Microwave MCM using multi-layer functional substrate," in *Proc. IECIE Gen. Conf.*, 1996, pp. PC-1–8.
- [77] M. Mandai, N. Nakajima, and K. Tonegawa, "Advanced ceramic multi-layer functional package for telecommunication equipment," in *Proc. Int. Microwave Conf.*, vol. 4, 1996, pp. 183–186.
- [78] K-H. Drue, H. Thust, and J. Muller, "RF model of passive LTCC components in the lower gigahertz-range," *Appl. Microwave Wireless*, vol. 4, pp. 26–35, 1998.
- [79] T. Hiratsuka and E. Ogawa, "Transversal filters using directional couplers," *Trans. Inst. Electron. Inf. Commun. Eng. C*, vol. C-124, pp. 124–127, 1992.
- [80] —, "Characteristics of a Ku-band transversal filter using directional couplers," *J. Inst. Electron. Inf. Commun. Eng.*, vol. C-94, pp. 94–98, 1993.
- [81] Y. Ishikawa, T. Nishikawa, J. Hattori, and K. Wakino, "Dielectric receiving filter with sharp stop band using active feedback resonator method for cellular base stations," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 2, 1989, pp. 591–594.
- [82] T. Nishikawa, Y. Ishikawa, J. Hattori, and K. Wakino, "Dielectric receiving filter with sharp stopband using an active feedback resonator method for cellular base stations," *IEEE Trans. Microwave Theory Tech.*, vol. 37, pp. 2074–2079, Dec. 1989.
- [83] W. R. Day, Jr., "Dielectric resonators as microstrip circuit elements," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1970, pp. 24–28.

[84] J. K. Plourde, D. F. Linn, I. Tatsuguchi, and C. B. Swan, "A dielectric resonator oscillator with 5 PPM long term frequency stability at 4 GHz," in *IEEE MTT-S Int. Microwave Symp. Dig.*, 1977, pp. 273–276.

[85] J. K. Plourde, "Frequency stability of dielectric resonator oscillators," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 2, 1978, pp. 480–480.

[86] Saito, Y. Arai, Y. Itoh, T. Nishikawa, and H. Komizo, "A 6 GHz highly stabilized GaAs FET oscillator using a dielectric resonator," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. 1, 1979, pp. 197–199.

[87] K. Wakino, T. Nishikawa, S. Tamura, and H. Tamura, "An X-band GaAs FET oscillator using a dielectric resonator," presented at the 37th Annu. Freq. Contr. Symp., 1983.

[88] A. von Hippel, Ed., *Dielectric Materials and Applications*. Cambridge, MA: MIT Press, 1954.

[89] F. R. Morgenthaler, "Velocity modulation of electromagnetic waves," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-6, pp. 167–172, Apr. 1958.

[90] P. D. Coleman and R. C. Becker, "Present state of the millimeter wave generation and technique art—1958," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-7, pp. 42–61, Jan. 1959.

[91] M. DiDomenico, Jr. and R. H. Pantell, "An X-band ferroelectric phase shifter," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-10, pp. 179–185, May 1962.

[92] M. Cohn and A. F. Eikenberg, "Ferroelectric phase shifters for VHF and UHF," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-10, pp. 536–548, Nov. 1962.

[93] P. D. Coleman, "State of the art: Background and recent developments—Millimeter and submillimeter waves," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-11, pp. 271–288, Sept. 1963.

[94] S. N. Das, "Application of barium titanate compositions to parametric amplification (correspondence)," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-13, pp. 245–247, Mar. 1965.

[95] J. W. Amoss, M. R. Donaldson, L. J. Lavedan, A. L. Stanford, and J. E. Pippin, "A ferroelectric microwave switch," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-13, pp. 789–793, Nov. 1965.

[96] J. R. Alday, G. E. Everett, and D. J. White, "Improved response of pyroelectric millimeter wave detectors (correspondence)," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-14, pp. 100–100, Feb. 1966.

[97] J. B. Horton and M. R. Donaldson, "A one-GHz ferroelectric limiter," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-15, pp. 517–623, Sept. 1967.

[98] R. E. Van Doeren, "Polarization transformation in twisted anisotropic media," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-14, pp. 106–111, Mar. 1966.

[99] R. Das, "Ferroelectric phase shifters," in *IEEE MTT-S Int. Microwave Symp. Program Dig.*, vol. 1, 1967, pp. 185–187.

[100] J. B. Horton and G. A. Burdick, "Measurement of dielectric constant and loss tangent in materials having large dielectric constants (correspondence)," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-16, pp. 873–875, Oct. 1968.

[101] E. K. Kirchner, "Microwave variable delay devices," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-17, pp. 986–997, Nov. 1969.

[102] W. D. Squire, H. J. Whitehouse, and J. M. Alsup, "Linear signal processing and ultrasonic transversal filters," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-17, pp. 1020–1040, Nov. 1969.

[103] J. A. Beall, R. H. Ono, D. Galt, and J. C. Price, "Tunable high temperature super conductor microstrip resonators," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. III, 1993, pp. 1421–1424.

[104] Y. Cho, S.-I. Haitsuka, and M. Kadota, "20 dB efficiency increment of surface acoustic wave elastic convolver using actively controlled nonlinear piezoelectric effect," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. II, 1994, pp. 1217–1220.

[105] C. M. Jackson, T. Pham, Z. Zhang, A. Lee, and C. Pettite-Hall, "Model for a novel CP W phase shifter," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. III, 1995, pp. 1439–1442.

[106] Y. Sung, S. Choi, and S. Nam, "Finite element analysis of microstrip line on ferroelectric (Ba-Sr)TiO₃ substrate," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. III, 1995, pp. 1261–1264.

[107] F. Abbas, L. E. Davis, and J. C. Gallop, "A distributed ferroelectric superconducting transmission-line phase shifter," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. III, 1996, pp. 1671–1674.

[108] F. De Flaviis, D. Chang, N. G. Alexopoulos, and O. M. Stafudd, "High purity ferroelectric materials by sol-gel process for microwave applications," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. I, 1996, pp. 99–102.

[109] G. Subramanyam, F. Van Keuls, and F. A. Miranda, "A K-band tunable microstrip bandpass filter using a thin-film conductor/ferroelectric/dielectric multilayer configuration," *IEEE Microwave Guided Wave Lett.*, vol. 8, pp. 78–80, Feb. 1998.

[110] A. Kozyrev, A. Ivanov, V. Keis, M. Khazov, V. Osadchy, T. Samoilova, O. Soldatenkov, A. Pavlov, G. Koepf, C. Mueller, D. Galt, and T. Rivkin, "Ferroelectric films: Nonlinear properties and applications in microwave devices," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. II, 1998, pp. 985–988.

[111] S. S. Gevorgian, E. F. Carlsson, E. L. Kollberg, and E. Wikborg, "Tunable superconducting band-stop filters," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. II, 1998, pp. 1027–1030.

[112] F. W. Van Keuls, C. H. Mueller, F. A. Miranda, R. R. Romanofsky, C. L. Canedy, S. Aggarwal, T. Venkatesan, R. Ramesh, J. S. Horwitz, W. Chang, and W. J. Kim, "Room temperature thin film Ba_xSr_{1-x}TiO₃ Ku-band coupled microstrip phase shifters: effects of film thickness, doping, annealing and substrate choice," in *IEEE MTT-S Int. Microwave Symp. Dig.*, vol. II, 1999, pp. 737–740.

[113] E. Carlsson and S. Gevorgian, "Conformal mapping of the field and charge distributions in multilayered substrate CPWs," *IEEE Trans. Microwave Theory Tech. (Special Issue)*, vol. 47, pp. 1544–1552, Aug. 1999.

S. Jerry Fiedziuszko (M'73–SM'83–F'92) received the M.S.E.E. degree (with distinction) from the Warsaw University of Technology, Warsaw, Poland, in 1967, and the Ph.D. degree from the Institute of Electron Technology, Warsaw, Poland, in 1993.

He is currently a Chief Scientist at Space Systems/LORAL (formerly Ford Aerospace), Palo Alto, CA. His technical work of the past several years has focused on applications of DRs, high-performance filters and multiplexers for communication satellites, high-temperature superconductivity (HTS) microwave components, and microelectromechanical systems (MEMS). He is a reviewer for *Proceedings of the IEEE, Electronics Letters*, and the National Science Foundation. He has authored or co-authored approximately 90 journal and conference papers. He holds 21 U.S. patents, with ten pending.

Dr. Fiedziuszko is a Fellow of the American Institute of Aeronautics and Astronautics (AIAA). He is a reviewer for the *IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES* and the *IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS*. He was the recipient of the Ford Aerospace Exceptional Inventor Award, the Ford Aerospace Outstanding Principal Investigator Award, the SS/L Exceptional Inventor Award (three times), and the 1990 Aerospace Laurels Award presented by *Aviation Week*. He was also the recipient of the IEEE Third Millennium Medal.

Ian C. Hunter (M'82–SM'94) received the B.Sc. Honors degree (first-class) and Ph.D. degree from The University of Leeds, Leeds, U.K., in 1978 and 1981, respectively.

In 1981, he became the Reader in microwave filters at The University of Leeds. Prior to this, he was with Filtronic plc, where he was involved with DR filters for cellular radio systems. His current research interests are microwave filters, network synthesis, tunable microwave devices, and power amplifiers.

Dr. Hunter is a Fellow of the Institution of Electrical Engineers (IEE), U.K.

Tatsuo Itoh (S'69–M'69–SM'74–F'82) received the Ph.D. degree in electrical engineering from the University of Illinois at Urbana-Champaign, in 1969.

From September 1966 to April 1976, he was with the Electrical Engineering Department, University of Illinois at Urbana-Champaign. From April 1976 to August 1977, he was a Senior Research Engineer in the Radio Physics Laboratory, SRI International, Menlo Park, CA. From August 1977 to June 1978, he was an Associate Professor at the University of Kentucky, Lexington. In July 1978, he joined the faculty at The University of Texas at Austin, where he became a Professor of electrical engineering in 1981 and Director of the Electrical Engineering Research Laboratory in 1984. During the summer of 1979, he was a Guest Researcher at AEG-Telefunken, Ulm, Germany. In September 1983, he was

selected to hold the Hayden Head Centennial Professorship of Engineering at The University of Texas at Austin. In September 1984, he was appointed Associate Chairman for Research and Planning of the Electrical 1991, he joined the University of California at Los Angeles, as Professor of Electrical Engineering and Holder of the TRW Endowed Chair in Microwave and Millimeter Wave Electronics. He was an Honorary Visiting Professor at the Nanjing Institute of Technology, Nanjing, China, and at the Japan Defense Academy. In April 1994, he was appointed as Adjunct Research Officer for the Communications Research Laboratory, Ministry of Post and Telecommunication, Japan. He currently holds a Visiting Professorship at The University of Leeds, Leeds, U.K., and is an External Examiner of the Graduate Program of the City University of Hong Kong. He has authored or co-authored 280 journal publications, 585 refereed conference presentations, and has written 30 books/book chapters in the area of microwaves, millimeter-waves, antennas and numerical electromagnetics. He has overseen 49 Ph.D. students.

Dr. Itoh is a member of the Institute of Electronics and Communication Engineers of Japan and Commissions B and D of USNC/URSI. He has been the recipient of numerous awards including the Shida Award presented by the Japanese Ministry of Post and Telecommunications in 1998, the Japan Microwave Prize in 1998, the IEEE Third Millennium Medal in 2000, and the IEEE Microwave Theory and Techniques Society (IEEE MTT-S) Distinguished Educator Award in 2000. He served as the editor of the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES from 1983 to 1985. He serves on the Administrative Committee of the IEEE MTT-S. He was vice president of the IEEE MTT-S in 1989 and president in 1990. He was the editor-in-chief of IEEE MICROWAVE AND GUIDED WAVE LETTERS from 1991 through 1994. He was elected as an Honorary Life Member of the MTT-S in 1994. He was the chairman of the USNC/URSI Commission D from 1988 to 1990, and chairman of Commission D of the International URSI from 1993 to 1996. He is chair of the Long Range Planning Committee of the URSI. He also serves on advisory boards and committees of a number of organizations.

Yoshio Kobayashi (M'74–SM'91–F'99) was born on July 4, 1939, in Japan. He received the B.E., M.E., and D.Eng. degrees in electrical engineering from the Tokyo Metropolitan University, Tokyo, Japan, in 1963, 1965, and 1982, respectively.

Since 1965, he has been with Saitama University, Saitama, Japan, where he is currently a Professor. His current research interests are DRs and filters, measurements of low-loss dielectric and high-temperature superconducting (HTS) materials, and HTS filters in the microwave and millimeter-wave region.

Prof. Kobayashi is a Fellow of Institute of Electrical Information and Communication Engineers (IEICE), Japan, and a member of the Institution of Electrical Engineers (IEE), Japan. He served as chair of the IEEE Microwave Theory and Techniques Society (IEEE MTT-S) Tokyo chapter (1995–1996), chair of the Technical Group on Microwaves, IEICE (1993–1994), chair of the IEE Technical Committee on Millimeter-wave Communications and Sensing, Japan (1993–1995), and chair of the Steering Committee of the 1998 Asia-Pacific Microwave Conference (APMC'98), Yokohama, Japan. He was the recipient of the 1995 Inoue Harushige Award.

Toshio Nishikawa (M'86–SM'90–F'97) was born on July 10, 1935, in Japan. He received the B.E. degree in electrical engineering and the Doctor of Engineering degree from Kanazawa University, Ishikawa, Japan, in 1958 and 1990 respectively.

In 1961, he joined the Murata Manufacturing Company Ltd., Kyoto, Japan. In 2000, he joined the Toyo Corporation, Tokyo, Japan. He is also currently a Guest Professor with the Cooperative Research Center, Saitama University, Saitama, Japan, and a Lecturer with the Department of Electrical Engineering, Ritsumeikan University, Shiga, Japan. His research activities are mainly concerned with DRs and their application to microwave components. Dr. Nishikawa is a member of the Institute of Electronics, Information and Communication Engineers (IEICE), Japan, and the Information Processing Society (IPSJ), Japan.

Steven N. Stitzer (M'74–SM'91) received the B.S.E.E., M.S.E.E., and Ph.D.E.E. degrees from Carnegie-Mellon University, Pittsburgh, PA, in 1970, 1971, and 1974, respectively.

In 1974, he joined the Westinghouse Electronic Systems Group (now Northrop Grumman Electronic Systems), Baltimore, MD, where he has been involved primarily with the design, development, production, and automated testing of high-power microwave control devices. These include gas plasma and diode Rx protectors, and high-power p-i-n diode switches and attenuators. Most of his recent work has involved modeling, analysis, and design of ferrite phase shifters, circulators, isolators, frequency-selective power limiters, and ferroelectric phase shifters. He is an inventor or co-inventor on 15 patents in these areas. He has authored, co-authored, or presented over 20 papers on these topics from 1976 to 2001.

Dr. Stitzer is a member of the Board of Directors of the Historical Electronics Museum, Linthicum, MD. He served as an officer in the Baltimore IEEE Microwave Theory and Techniques Society (IEEE MTT-S) chapter and was chairman from 1980 to 1981. He was chairman of the IEEE MTT-S Standards Subcommittee P457 from 1980 to 1982. He served as Publicity Chairman on the 1986 IEEE MTT-S International Microwave Symposium Steering Committee, and was overall Steering Committee Chairman for the 1998 IEEE MTT-S International Microwave Symposium (IMS), Baltimore, MD. He has served on the IEEE MTT-S IMS Technical Program Committee since 1993. He is a member of the IEEE MTT-13 Microwave Ferrites Technical Committee. He is currently chairman of the IEEE MTT-S Historical Collection Committee. He was a recipient of the 2000 IEEE Millennium Medal.

Kikuo Wakino (M'72–SM'89–F'92–LF'99) received the B.S. degree in physics and Ph.D. degree in electrical engineering from Osaka University, Osaka, Japan in 1950 and 1980, respectively.

In 1952, he joined the Murata Manufacturing Company Ltd., where he was engaged in the research and development for dielectric and piezoelectric ceramics. Since 1970, his effort has been concentrated on the development of temperature-stable, extremely low-loss dielectric material and DR for microwave application. His recent interest is to develop LTCC material and its applications as MCMs. Since 1992, he has been a Visiting Professor in the Department of Electrical Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan.

Dr. Wakino is a member of the Institute of Electronics, Information and Communication (IEICE), Japan, and The Japan Society of Applied Physics. He is the Fellowship Member of The American Ceramic Society. He was a recipient of the 1996 IEEE Microwave Application Award and the 1988 Blue Ribbon Medal presented by the Japanese Government.